首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2655篇
  免费   227篇
  2023年   5篇
  2022年   7篇
  2021年   57篇
  2020年   31篇
  2019年   43篇
  2018年   70篇
  2017年   55篇
  2016年   86篇
  2015年   147篇
  2014年   154篇
  2013年   208篇
  2012年   255篇
  2011年   238篇
  2010年   169篇
  2009年   138篇
  2008年   196篇
  2007年   170篇
  2006年   161篇
  2005年   146篇
  2004年   124篇
  2003年   106篇
  2002年   97篇
  2001年   23篇
  2000年   17篇
  1999年   24篇
  1998年   27篇
  1997年   16篇
  1996年   12篇
  1995年   10篇
  1994年   11篇
  1993年   16篇
  1992年   8篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   10篇
  1987年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1967年   1篇
  1966年   2篇
  1963年   1篇
排序方式: 共有2882条查询结果,搜索用时 453 毫秒
31.
32.
BCL2 family proteins are important regulators of mitochondrial outer membrane permeabilization (MOMP). In recent years, BCL2 family proteins have also been linked to the regulation of mitochondrial bioenergetics and dynamics. Given their overexpression in breast cancer cells, we sought to explore whether two key members of this family, BCL2 and BCL(X)L impacted on mitochondrial fusion/fission processes. By employing a single cell imaging and RNA sequencing we found that overexpression of BCL2 or BCL(X)L increases mitochondrial dynamics and alters the expression profile of genes involved in this process. Collectively, our data show that overexpression of BCL2 proteins regulates mitochondrial dynamics in breast cancer tumor cells.  相似文献   
33.
34.
Peroxiredoxin 1 (PRDX1) is an antioxidant enzyme that, when secreted, can act as a proinflammatory signal. Here we studied the regulation of intracellular PRDX1 by lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) in the RAW 264.7 mouse macrophage cell line. While LPS or IFN-γ alone did not affect PRDX1 protein levels, their combination led to an almost complete loss of the PRDX1 dimer. This was likely mediated by the increased production of nitric oxide (NO) as it was reversed by the NO synthase inhibitor L-N-methylarginine (L-NMMA), while a NO-releasing agent decreased PRDX1 levels. Inhibition of the proteasome with MG132 also prevented the loss of the PRDX1 dimer, suggesting that the decrease is due to a NO-activated proteasomal degradation pathway. By contrast with the decrease in protein levels, LPS increased PRDX1 mRNA and this effect was amplified by IFN-γ. Two other Nrf2 target genes, thioredoxin reductase (TXNRD1) and haem oxygenase (HMOX1), were also induced by LPS but IFN-γ did not increase their expression further. This study shows that inflammation differentially regulates PRDX1 at the levels of protein stability and gene expression, and that NO plays a key role in this mechanism.  相似文献   
35.
We used X-rays from a linear accelerator and from a low energy therapeutic source to calibrate the single cell gel electrophoresis (comet assay), a widely used method to measure DNA damage. γ-Rays from 60Co, with known efficiency in inducing DNA breakage, were used as reference. Human lymphocytes and one murine tumour cell line, F10-M3 cells, were irradiated under different experimental conditions. A similar relationship between radiation dose and induced DNA damage was obtained with γ- and X-rays. A calibration curve was constructed to convert the comet assay raw data into break frequency. The median levels of DNA breaks and oxidative damage in circulating lymphocytes from healthy volunteers were calculated to be 0.76 and 0.80 breaks/109 Da, respectively, (0.50 and 0.52 breaks/106 bp). The values of oxidative DNA damage were in the same order of magnitude as those found by others with HPLC methods.  相似文献   
36.
The present study was designed to follow our pharmacomodulation work in the field of non-steroidal aromatase inhibitors. All target compounds 12ah and 28ah were tested in vitro for human placental aromatase inhibition, using testosterone or androstenedione as the substrate for the aromatase enzyme and the IC50 and relative potency to aminoglutethimide data are included. A SAR study indicated that 3-[(4-fluorophenyl)(1H-imidazol-1-yl)methyl]-1-ethyl-2-methyl-1H-indole (28?g) was a highly potent and selective aromatase inhibitor with IC50 value of 0.025?μM. 28?g was also a weak inhibitor of androstenedione synthesis.  相似文献   
37.
38.
39.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in resistant A549 cells. Time course experiments in H460 cells showed that induction of p38 phosphorylation preceded that of JNK. To explore the function of these kinases in apoptosis activation by TRAIL, chemical inhibitors or siRNAs were employed to impair JNK or p38 functioning. JNK activation counteracted TRAIL-induced apoptosis whereas activation of p38 stimulated apoptosis. Notably, the serine/threonine kinase RIP1 was cleaved following TRAIL treatment, concomitant with detectable JNK phosphorylation. Further examination of the role of RIP1 by short hairpin (sh)RNA-dependent knockdown or inhibition by necrostatin-1 showed that p38 can be phosphorylated in both RIP1-dependent and -independent manner, whereas JNK phosphorylation occurred independent of RIP1. On the other hand JNK appeared to suppress RIP1 cleavage via an unknown mechanism. In addition, only the activation of JNK by TRAIL was caspase-8-dependent. Finally, we identified Mcl-1, a known substrate for p38 and JNK, as a downstream modulator of JNK or p38 activity. Collectively, our data suggest in a subset of NSCLC cells a model in which TRAIL-induced activation of p38 and JNK have counteracting effects on Mcl-1 expression leading to pro- or anti-apoptotic effects, respectively. Strategies aiming to stimulate p38 and inhibit JNK may have benefit for TRAIL-based therapies in NSCLC.  相似文献   
40.
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号